refractive Retinopathy ocular degeneration cataract Form keratoconus Glaucoma ΜΟΝΟΕΣΤΙΑΚΟΙ Diabetes Mellitus Arterial Hypertension vitrectomy αποκόλληση αφιβληστριδούς θεραπεία κερατόκωνου Ophthalmological surgical Glaucoma equipment Macula Laesr myopia (nearsightedness) complications Laser myopia (nearsightedness) Corneal Collagen Crosslinking diagnosis well
An increase of about 200% has been noted for the past two years in laser eye surgeries that treat swiftly and without pain disorders such as myopia, hyperopia and astigmatism. Glasses and contact lenses are no longer needed.
An impressive increase up to 200% in ophthalmological procedures has been noted for the past two years in Greece. Interest in them is huge despite the crisis. People between the ages of 18 and 40, mostly women, seek a drastic way to get rid of glasses and contact lenses. The factors that increase demand are aesthetic and pathological.
“Air pollution contributes to the appearance of problems, like allergies and keratitises, from long-term use of contact lenses”, explains to “Ethnos” the ophthalmologist surgeon Dr. George Chronopoulos. According to the doctor, technology now offers the possibility of a painless and immediate treatment of myopia, hyperopia and astigmatism. Such procedures, he explains, are an integral part of refractive surgery: “The results are impressive. The procedure is done fast, painlessly and the patient leaves the clinic immediately without bandages”.
For the proper treatment of refractive abnormalities, thorough preoperative tests are needed. The laser sculpts and gives shape to the corneal surface, in order to correct the refractive abnormality. The technique mainly used worldwide today is laser-assisted in situ keratomileusis (LASIK) which is a combination of microsurgery and laser. The creation of the flap is done either with a mechanical microkeratome or with laser use (Femtosecond laser). LASIK is appropriate for myopias from 1 to 12 degrees, while hyperopia and astigmatism have more restrictions (6 degrees). The surgeon creates a flap on the cornea and lifts it up like a cap. The laser acts under the surface and on the corneal layer, sculpting its surface without injuring it; the flap is closed after the procedure has ended.
Laser application lasts less than 30 seconds, while the whole procedure lasts no more than 5 minutes. No protective lens or sutures are needed and there is no pain or discomfort postoperatively. The restoration of vision happens immediately, while the patient leaves the clinic without bandages and without needing his glasses.
CONDITIONS
EVERY PERSON that has a refractive abnormality can undergo a corrective procedure, if he consults with his ophthalmologist and proper indications are present.
According to Dr. Chronopoulos, everyone who is over 18 years of age and their refraction is stable for the past year can undergo this procedure, as well as, in general, all those who are interested in their appearance and want good quality of vision without dependence on glasses or contact lenses.
Published in the ewspaper Ethnos on 5 November 2010
Refractive surgery has brought a revolution in myopia, hyperopia and astigmatism correction. We are already in the third decade of laser use and we can really observe that precision and safety are already here. With the use of this impressive technology, we can forever eliminate our dependence on corrective glasses or contact lenses.
There are two methods of effective correction of high or low degrees of myopia, hyperopia and astigmatism: PRK and LASIK (conventional LASIK, where the creation of the flap is done with a mechanical microkeratome and FEMTO-LASIK, where it is done with a femtosecond laser). The difference between these two methods lies in the fact that, in the first, the correction occurs on the surface of the cornea, while in the second in its interior. In PRK there is some minor discomfort the first 2-3 days, while in LASIK the discomfort is insignificant and eyesight restoration happens almost immediately, on the very first day. The final result is the same in both cases. An important role in the patient's decision to do away with glasses and contact lenses plays the trust and relationship between doctor and patient. The most important part of a refractive surgery is thorough preoperative tests, which will show us if the patient is eligible for a procedure in that particular area. Detailed and thorough preoperative tests ensure the success of the procedure. Timewise, the procedure lasts only a few minutes and it is never longer than 5 or 6 minutes for both eyes. The doctor uses local anesthesia and the patient feels no pain. It is important to note that the correction is permanent and in the very few cases where some degrees of the condition remain, then an additional laser procedure can be done to achieve full correction. An important role in the patient's decision to do away with glasses and contact lenses has the trust and relationship between doctor and patient. The 25 years of laser use allow us to say that the possibility of serious complications is negligible. Even those rare complications can be treated. We are in a position to say with absolute certainty that the chances of infection from contact lenses are more than the possible complications of refractive surgery.
Keratoconus is a non-inflammatory disorder of the cornea, which is characterized by the presence of a progressive deformation of its surface. The cornea gradually takes a “conical” shape (it expands by creating an extrusion), deforming the reflection formed in the fundus of the eye. A progressive thinning can also be observed, as well as scarring, and finally opacity in the area where the cone has formed. Despite ongoing research, the causes of keratoconus are essentially unknown. It is generally considered a genetic disease caused by multiple factors, mainly irregularities in the structure or the metabolism of various segments of the cornea. It used to be considered a rare disorder, perhaps because there weren't any diagnostic means to detect it in the early stages. Today we know that keratoconus is not so rare. There are more than 20,000 people in Greece with keratoconus (approximately 1 for every 2,000 people). It usually appears in adolescence and progresses relatively fast, while later the rhythm of deterioration decreases and stops at around 35 years of age. Physical examination does not always provide evidence for a positive diagnosis. However, keratometry can give altered parameters. The patient presents an irregular progressive astigmatism that previously did not exist. In more advanced stages, the diagnosis is easier and with the help of a slit lamp, the cornea can present the known conical form, as well as thinning and haze of its central area. Nonetheless, positive diagnosis occurs with the help of an electronic device and a test called “corneal map” (corneal topography). In this test, a 2D image of the corneal topography is taken and, based on that, we can diagnose even the subclinical forms (those that haven't presented any symptoms). It is strongly believed today that the riboflavin method can substantially delay or even stop the development of keratoconus, saving the patient from a potential corneal transplant. This method is still evolving and is called C3-R (Corneal Collagen Crosslinking with Riboflavin). Through lab tests and clinical examinations, it has been proven that it reinforces the inner structure of the cornea, stabilizing its architecture and, specifically, strengthening the bonds of the corneal collagen fibers, which are one of the basic ingredients for maintaining its structure.
C3-R treatment can be done at the clinic and lasts about 60 minutes. During the treatment, drops of a riboflavin (B2) mix are instilled, which are then activated with UV rays.
Cataract is a haze of the natural lens inside the eye. This lens, which is found behind the iris (the colored part of the eye) is capable of moving and changing shape, so that it can function exactly like the lens of a camera, by focusing bright images on the retina, which, in turn, sends them to your brain. The human lens, consisted mainly of protein and water, can present some haze, in such a degree that the light and images are not allowed to reach the retina. Eye damage, certain disorders or even some medicine can cause this haze. In more than 90% of the cases, however, this haze is cause by the aging process. Cataract isn't a deposition in the eye and cannot be removed with diet or laser. The best way to treat cataract is to remove the old, hazy lens and to replace it with an artificial one. Cataract can be the cause of the blurring of clear images, the dimming of bright colors or a decrease in vision at night. It is also possible that it is the reason why reading or bifocal glasses that used to help you read or perform simple tasks, cannot help you any longer. Unfortunately, it is not feasible to prevent cataract, but only to remove and replace it with an artificial lens which can restore your vision and significantly improve quality of life. The proper time to remove cataract is when the quality of your vision starts causing restrictions in your activities and your enjoyment of life.
Glaucoma is a group of ocular disorders that share as a symptom the destruction of the optic nerve. The optic nerve consists of nerve fibers and is responsible for the transfer of images from the eye to the brain. Glaucoma is a disorder that leads to loss of vision without warning. It is possible that there are no symptoms in the early stages of the disease and that patients with glaucoma don't know they have it. Loss of vision starts with peripheral or side vision. This loss might be compensated by the unconscious turn of the head towards the corresponding side, which results in the patient not realizing his condition until there is a significant loss of visual acuity.
For this reason, early diagnosis is important and can prevent major damage. All people above forty years of age and especially those with a family history of glaucoma should be examined once or twice a year.
Diabetic Retinopathy is a disorder at the small (capillary) vessels of the retina. Diabetic retinopathy concerns every diabetic patient either insulin dependent (Type 1) and of young age or non-insulin-dependent (Type 2) and the disease has appeared later in life. The diabetic patient should know that the most important thing he needs to do for his condition is to keep his blood sugar under control. Blood sugar not under control causes a more rapid progress of diabetic retinopathy. He should also control his hypertension, his hyperlipidemia (cholesterol and triglycerides), if such exists, and limit smoking and alcohol. Patients with diabetes should be examined by an ophthalmologist once every 6 months. It is important to know that today, with the improved methods of diagnosis and treatment, only a small percentage of patients develop retinopathy and face serious eyesight problems.
Age-related macular degeneration, is the most common cause of irreversible blindness in the western world. This disorder affects the central area of the fundus, which is also the most important. The consequence? A gradual deterioration of our central vision with no other symptoms. Several studies have calculated that 6% to 10% of people among the ages of 65 and 74 years old and 19% to 30% of people above 75 years old have this disorder. As we can see, it is related to the elderly and for this reason it is called age-related macular degeneration. Age-related macular degeneration is caused by many factors. These risk factors may include age, heredity, light-colored irises, smoking, cardiovascular diseases, as well as sunlight. The most important factor is, of course, the aging process.
What can we do to prevent it?
Wear sunglasses with UV filter, to protect our eyes.
You can take dietary supplements, multivitamins and zinc products. Even though it is difficult to prove those products' preventive action, several studies have shown that they can help delay the disease. Dosage should be indicated by the ophthalmologist in cooperation with the pathologist, in case of contraindications.
You should regularly check your eyes after 40 years of age and visit your ophthalmologist as soon as you observe changes in your eyesight, especially scotomas related to your central vision. Special diagnostic tests like OCT and Fluoroangiography are quite often valuable in the treatment of the disease.
You should reduce or, better yet, quit smoking.
Regulate your blood pressure, your cholesterol and consult with a cardiologist, in case it is needed.
Published in the magazine Dimosios Tomeas, volume 286, July-August 2011
The existence of a refractive abnormality was and still is a reason for rejection from Military Academies. Even if the candidate fulfills all requirements to enter such a school, the existence of a refractive fault, even if it is corrected with glasses or contact lenses (visual acuity 10/10), will not allow him to participate in the examinations.
Each of these Military Academies has its own criteria regarding the required visual acuity and in some of them, candidates will be accepted even if they wear glasses or contact lenses, as long as their corrected acuity is not lower than what is required.
In particular, in the table below you can see the visual requirements for the candidates of every Military Academy. It is worth noting that except for the Hellenic Air Force Academy (Pilots), none of the other schools mention restrictions or exclusions due to correction with refractive surgery.
Hellenic Military Academy (Arms) | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent) |
Hellenic Air Force Academy (Engineers) | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent) |
Noncommissioned Officers Army Academy |
Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent) |
Hellenic Air Force Academy (Technical NCO School) |
Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent) |
Hellenic Air Force Academy (Administrative NCO School) | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent) |
Hellenic Military Academy (Corps) | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 6 diopters (spherical equivalent) |
Corps Officers Military Academy | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 6 diopters (spherical equivalent)
|
Officers' School of Nursing | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 6 diopters (spherical equivalent) |
Naval Cadets Academy (Combatants) | Visual acuity with or without correction 10/10 in each eye without correction |
Naval Cadets Academy (Engineers) |
Visual acuity without correction 1/10 in each eye, 10/10 with correction, myopia should not be above 2.5 diopters, hyperopia 3 diopters and astigmatism 2 diopters. All candidates for naval schools should not have undergone refractive surgery with radial keratotomy |
Hellenic Navy's Petty Οfficers' Academy | Visual acuity without correction 1/10 in each eye, 10/10 with correction, myopia should not be above 2.5 diopters, hyperopia 3 diopters and astigmatism 2 diopters. All candidates for naval schools should not have undergone refractive surgery with radial keratotomy |
Hellenic Air Force Academy (Pilots) |
Visual acuity in close or in a distance no less than 10/10 for each eye without correction and they should not have undergone any refractive surgery. |
Hellenic Police Academy | Visual acuity with or without correction 10/10 in each eye and refractive anomaly should not be above 4.5 diopters (spherical equivalent). Astigmatism should not exceed 5 diopters. |
It is evident that even if visual acuity with correction is adequate, the degrees of refractive abnormality are an obstacle for the participation of the candidates in some schools.
In the past, the only ways to correct these refractive abnormalities were glasses and contact lenses. In some of those schools, however, vision should be perfect without correction. In others, even if corrected visual acuity was 10/10, if the refractive anomaly was above the accepted limit, the candidate was rejected.
The problem of refractive abnormalities can now be surpassed with refractive surgery (LASIK and PRK), which are considered routine surgeries in the hands of an experienced ophthalmologist surgeon. The improvement of laser technology and surgical techniques used today provide painless, safe procedures with excellent, predictable and stable in time results. Refractive surgeries are now undoubtedly an excellent application of advanced technology, which can open the doors of a secure profession to many young people who thought their options limited due to the condition of their eyes, while they were fully qualified for a brilliant career.
Remember: Your ophthalmologist is the best source for responsible answers on issues related to your eyes and their health. Under no circumstances is information taken from our website intended to replace him. Seek your doctor for complete information.
This method is effective and painless. It is used to correct medium to high degrees of myopia and astigmatism, while it is the only method to correct hyperopia.
The advantages of this method are many, because treatment occurs on the corneal layer after creating a protective tissue (flap). There are two ways to create the flap.
Femto-Lasik με Femtosecond laser
Postoperative medication lasts only ten days, while the vision is fairly good from the very first day. The degree of correction is calculated by specialized software.
There is conventional LASIK, where the flap is created with a mechanical microkeratome and FEMTO-LASIK, where it is created with a femtosecond laser. With the new Femtosecond laser technology, the surgeon is able to exclusively use laser during all the stages of the surgery, even the first stage, so that the LASIK procedure can be completed without the need to apply a “scalpel” in any of the stages. Its name is derived from the number of pulses per second in which this particular laser operates.
In particular, microscopical, rapid laser pulses are used, which operate in the infrared zone of the light spectrum and, in combination with the extremely short time of activity and the slight amount of energy, they achieve photodisruption of the tissue on which they fall (in our case, the cornea). Photodisruption is visible in the form of a bubble, which, in the end, is the force with which the femtosecond laser cuts the tissues. Subsequently, the doctor creates the flap by lifting the tissue of the cornea towards the back, at the point where the bubbles have been formed due to the light pulses. The creation of the flap lasts merely 15 seconds. That is the time when the surgeon can move on to the second stage of the procedure, that is the full correction of the refraction and the restoration of vision.
Femtosecond laser lasik, virtual laser procedure (youtube)
Femtosecond laser and cataract procedure
Ophthalmological Research Center
64, Vass. Sofias Av.6th floor
Phone number: 210 7295000
Fax: 210 3622245
info@eyeclinic.com.gr